
hhh

A Tool Box for
Compiler Construction

J. Grosch
H. Emmelmann

hhh

hhh
GESELLSCHAFT FÜR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FÜR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITÄT KARLSRUHE

hhh

Project

Compiler Generation

hhh

A Tool Box for Compiler Construction

Josef Grosch
Helmut Emmelmann

Jan. 21, 1990

hhh

Report No. 20

Copyright 1990 GMD

Gesellschaft für Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1
D-7500 Karlsruhe

1

A Tool Box for Compiler Construction

J. Grosch, H. Emmelmann
GMD Forschungsstelle an der Universität Karlsruhe

Vincenz-Prießnitz-Str. 1, D-7500 Karlsruhe, Germany
E-Mail: grosch@karlsruhe.gmd.de, emmel@karlsruhe.gmd.de

Abstract

This paper presents a set of tools supporting the construction of nearly every compiler
phase. Design goals of this tool box have been practical usability, significantly reduced effort
for compiler construction, and high quality of the generated compilers. Especially efficiency
should be competitive to hand crafting.

Currently modules in the target languages C and Modula-2 can be generated. First realistic
applications demonstrate the excellent performance of the tools and show that the tools allow the
construction of production quality compilers.

1. Introduction

Within this paper we present a compiler generation tool box. It contains tools for nearly
every compiler phase. We believe the tools are applicable for realistic compiler projects.

The tools generally accept as input a specification written in a language specific to the tool
and produce modules in a target language (C or Modula-2). Therefore a tool can be seen as a
generic solution of a compilation subproblem, which is instantiated by the specification.

Using tools instead of hand crafting a compiler has several advantages: The effort neces-
sary to build a compiler is substantially reduced. Instead of writing a program a much shorter
specification has to be developed. The tools can perform many consistency checks on the
specifications. Writing automatically checked specifications drastically reduces the amount of
possible errors and hence increases the reliability of the resulting compiler.

The tool box consists of the following tools:

Rex scanner generator
Lalr LALR(1) parser generator
Ell LL(1) parser generator
Ast generator for abstract syntax trees
Ag attribute evaluator generator
Estra transformation of attributed syntax trees
Beg back end generator
Reuse library of reusable modules

All the tools were originally programmed in Modula-2 and run under UNIX. Using the
Modula-2 to C translator called Mtc [Mar90] (see section 6.1), the sources also exist in C.
Currently most of the tools generate modules in the target languages C and Modula-2.

2

The next two sections present the design goals and the common features of the tools. Sec-
tion 4 describes the compiler model we prefer. In section 5 all the tools are sketched briefly.
Section 6 reports about the experiences of two realistic applications of the tools. Section 7 gives
a summary and describes future work.

2. Design Goals

The major design goals of the tool box were:

- practical usability for realistic languages

- automatic generation of production quality compilers

- substantial increase in compiler construction productivity and compiler reliability

- quality of the resulting compiler competitive to hand crafting

By defining these goals we wanted to produce a tool box which will be used in practical
compiler construction work. Therefore we considered competitiveness to hand crafting impor-
tant, because we feel that tools promising a high productivity and reliability but which produce
compilers whose code quality or efficiency is lower than hand crafted compilers, will hardly be
used.

3. Common Implementation Decisions

Our design goals lead to several design decisions common to all of our tools. Nearly every
tool needs a programming language in which the user can specify certain actions, conditions, or
calculations. That is obviously true for attribute grammars, but also the back end generator needs
to evaluate several attributes and conditions. Even the parser generators need such a language
for the specification of semantic actions.

We decided to select the target language (namely C or Modula-2). Specifications therefore
may contain pieces of target language code. Besides some pattern replacement the text is copied
unchanged to the generated modules. The disadvantage of that method is that the target
language code can not be checked completely by the tool. For example the attribute grammar
tool can not check if attribute evaluations do not have side-effects. On the other hand it gives a
great deal of flexibility, as the whole power of the target language is available. It also drastically
increases the practical usability, as interfacing to other components (perhaps hand-written ones)
is easily possible. It finally keeps the tools and the specification languages simple. The user is
not forced to learn a new language to express conditions or actions.

Our experience with prior tools is that during realistic compiler design a lot of small special
problems occur, which the tool can not handle. Therefore loopholes, possibilities how the user of
the tools can easily plug in hand-written parts, are necessary. Loopholes also allow to keep tools
simple, as one is not forced to provide a solution for every special case, immediately. It is possi-
ble to use the loophole until a really good solution is found to be build in a tool.

The tools are largely independent of each other. This is achieved by the property that none
of the generated modules has a fixed kind of output. Instead this output is specified using state-
ments from the target language and thus can be chosen arbitrarily. The independence of the
tools allows for a large degree of freedom in the compiler design. An exception are the tools Ag

and Estra which operate on syntax trees specified using Ast. Therefore they depend on Ast and
all three tools require the compiler to use an attributed abstract syntax tree.

4. Compiler Model

Although the tools do not directly enforce any specific compiler model, we want to present
the model we prefer and which we believe is supported best by the tools. We still consider
semantic analysis to be the hard part of a compiler. Therefore we base semantic analysis and the

3

Scanner spec:
regular expressions

rex Scanner

Parser spec:
concrete syntax (grammar)

mapping: concrete → abstract

lalr
ell

Parser

Tree spec:
abstract syntax

(grammar)
ast Tree

Semantics spec:
attribute grammar

ag Semantics

Trafo spec:
mapping:

abstract → intermediate
estra Trafo

Intermediate spec:
intermediate language

(grammar)
ast Intermediate

Codegenerator spec:
mapping:

intermediate → machine
beg Codegenerator

Specification Tool
Compiler
Module

Fig. 1: Compiler Model

generation of an intermediate language on the abstract syntax. We explicitly construct the
abstract syntax tree which might be decorated with attributes during semantic analysis. Besides

4

the abstract syntax, which can be regarded as a first (high-level) intermediate representation, we
prefer to use a second (low-level) intermediate representation as interface to the code generator.
This has advantages for optimizations and for pattern directed code selection.

Figure 1 shows our preferred compiler model. In the right column are the main modules
that constitute a compiler. The left column contains the necessary specifications. In between
there are the tools which are controlled by the specifications and which produce the modules.
The arrows represent the data flow in part during generation time and in part during run time.

In principle the compiler model works as follows: a scanner and a parser read the source,
check the concrete syntax, and construct an abstract syntax tree. They may perform several nor-
malizations, simplifications, or transformations in order to keep the abstract syntax relatively
simple. Semantic analysis is performed on the abstract syntax tree. Optionally attributes for code
generation may be computed. Afterwards the abstract syntax tree is transformed into an inter-
mediate representation. The latter is the input of the code generator which finally produces the
machine code.

5. The Tools

The following sections briefly sketch the tools that make up the tool box. We only describe
the features of the tools - for details, for the specification techniques, or for examples there exist
separate documents.

5.1. Rex

The scanner generator Rex has been developed with the aim to combine the powerful
specification method of regular expressions with the generation of highly efficient scanners
[Gro87b, Gro88, Gro89a]. The name Rex stands for regular expression tool, reflecting the
specification method.

A scanner specification consists in principle of a set of regular expressions each associated
with a semantic action. Whenever a string constructed according to a regular expression is
recognized in the input of the scanner its semantic action which is a sequence of arbitrary state-
ments written in the target language is executed. To be able to recognize tokens depending on
their context, Rex provides start states to handle left context and the right context can be
specified by an additional regular expression. If several regular expressions match the input
characters, the longest match is preferred. If there are still several possibilities, the regular
expression given first in the specification is chosen.

Rex generated scanners automatically provide the line and column position of each token.
For languages like Pascal and Ada where the case of letters is insignificant tokens can be nor-
malized to lower or upper case. There are predefined rules to skip white space like blanks, tabs,
or newlines and there is a mechanism to handle include files. The generated scanners are
table-driven deterministic finite automatons. The tables are compressed using the so-called
comb-vector technique [ASU86].

The most outstanding feature of Rex is its speed. The generated scanners process nearly
200,000 lines per minute without hashing of identifiers and up to 150,000 lines per minute if
hashing is applied. (Keywords do not require hashing if they are recognized directly by the gen-
erated automaton.) This is 4 times the speed of Lex [Les75] generated scanners. In typical cases
Rex generated scanners are 4 times smaller then Lex generated ones. Usually Rex takes only 1/10
of the time of Lex to generate a scanner.

5.2. Lalr

The parser generator Lalr has been developed with the aim to combine a powerful
specification technique for context-free languages with the generation of highly efficient parsers

5

[Gro88, GrV88]. As it processes the class of LALR(1) grammars we chose the name Lalr to
express the power of the specification technique.

The grammars may be written using EBNF constructs. Each grammar rule may be associ-
ated with a semantic action consisting of arbitrary statements written in the target language.
Whenever a grammar rule is recognized by the generated parser the associated semantic action is
executed. A mechanism for S-attribution (only synthesized attributes) is provided to allow com-
munication between the semantic actions.

In case of LR-conflicts a derivation tree is printed to ease the location of the problem. The
conflict can be resolved by specifying precedence and associativity for terminals and rules. Syn-
tactic errors are handled fully automatically by the generated parsers including error reporting,
recovery, and repair. The generated parsers are table-driven. Like in the case of Rex,
comb-vector technique is used to compress the parse tables. The generator uses the algorithm
described by [DeP82] to compute the look-ahead sets.

Parsers generated by Lalr are two to three times faster than Yacc [Joh75] generated ones.
They reach a speed of 580,000 lines per minute on a MC 68020 processor excluding the time for
scanning. The size of the parsers is only slightly increased in comparison to Yacc, because there
is a small price to be paid for the speed.

5.3. Ell

The parser generator Ell processes LL(1) grammars which may contain EBNF constructs
and semantic actions. It generates recursive descent parsers [Gro88, GrV88, Gro89b]. A
mechanism for L-attribution (inherited and synthesized attributes evaluable during one preorder
traversal) is provided. Like Lalr, syntax errors are handled fully automatic including error
reporting from a prototype error module, error recovery, and error repair. Those satisfied with
the restricted power of LL(1) grammars may profit from the high speed of the generated parsers
which lies around 900,000 lines per minute.

5.4. Ast

Ast is a generator for abstract syntax trees [Gro91a, Gro91b]. It generates program
modules or abstract data types to handle attributed trees. Besides trees attributed graphs can be
handled as well. The nodes of these data structures may be associated with arbitrary many attri-
butes of arbitrary type. The specifications for this tool are based on extended tree grammars.
They can be regarded as a common notation for concrete and abstract syntax as well as for attri-
buted trees and graphs. An extension mechanism provides single inheritance. Internally the trees
are stored as linked records. Ast can be requested to generate many operations for trees: node
constructors combine aggregate notation and storage management. Reader and writer procedures
transfer graphs from/to files in ASCII or binary format. The order of subtrees in a list can be
reversed. Procedures for commonly used traversal strategies like top down (depth first) or bot-
tom up (reverse depth first) are provided. An interactive graph browser allows the inspection of
graphs in a readable way and thus supports debugging.

5.5. Ag

Ag is an attribute evaluator generator [Gro89d, Gro90]. It processes ordered attribute
grammars (OAGs) [Kas80] as well as higher order attribute grammars (HAGs) [VSK89]. It is
based on the abstract syntax or to be more specific on tree modules generated by Ast. Therefore
the tree structure is fully known. The terminals and nonterminals may have arbitrary many attri-
butes which can have any target language type. This includes tree-valued attributes. Ag allows
attributes local to rules and offers an extension mechanism which provides (single) inheritance
for attributes and for attribute computations. It also allows the elimination of chain rules. The

6

attribute computations are expressed in the target language and should be written in a functional
style. It is possible to call external functions of separately compiled modules. Non-functional
statements and side-effects are possible but require careful consideration. The syntax of the
specification language is designed to support compact, modular, and readable documents. An
attribute grammar can consist of several modules where the context-free grammar is specified
only once. There are shorthand notations for copy rules and threaded attributes which allow the
user to omit many trivial attribute computations. The generated evaluators are very efficient
because they are directly coded using recursive procedures. Attribute storage is optimized by
implementing attributes as local variables and procedure parameters whenever their lifetime is
contained within one visit.

5.6. Estra

Estra is a generator for efficient syntax tree transformers [Vie89]. The generated transfor-
mation modules take an attributed tree as input and map it to an arbitrary output. The output can
be a new tree, a linear code such as e. g. P-Code, source code like e. g. Pascal, or a sequence of
procedure calls. In any case the input tree remains unchanged in order to avoid to reevaluate the
attributes for reasons of consistency. However, subtrees of the input tree may be reused to con-
struct an output tree. The intended application areas for the transformations are the generation of
intermediate representations out of abstract syntax trees and optimizers operating on internal tree
representations of any level. Estra cooperates with Ast: the input trees are constructed by
modules generated with the latter tool.

The specification of a transformer is rule based. A rule consists of a pattern describing a
tree fragment and an action. Actions are composed of target language statements. It is possible
to specify several transformations. The subtrees of a pattern can be transformed in any order.
They can be transformed several times by the same or by different transformations. The actions
have read access to the attributes of the input tree. Additional synthesized and inherited attri-
butes may be evaluated during the transformation. The application of rules can be restricted by
conditions. Ambiguities may be resolved using costs.

Two implementations of the pattern-matcher can be selected: a directly coded dynamic pro-
gramming algorithm or a table-driven tree pattern-matcher. In both cases the transformation has
two phases. While the first one determines the patterns that match with minimal costs the second
one executes the associated actions.

5.7. Beg

Beg (a back end generator) produces code selectors and register allocators [Emm89a,
Emm89b]. Code selection is performed using tree pattern matching. The target instructions are
described using rules containing tree patterns. The resulting code generator accepts a tree
oriented intermediate language. An input tree is translated by covering the tree by the patterns
and afterwards emitting the corresponding instructions. Rules are annotated with cost values
which allows the code generator to select a cover of minimal cost, that means the sum of the
costs of all rules in the cover is minimal.

Therefore the user only describes ambiguously how certain intermediate language con-
structs can be translated. He need not to program the algorithm to select the best way to translate
a specific input tree. A good way to develop a code generator description is to first describe only
a subset of the machine’s instructions, big enough to compile the whole language. This results in
a running compiler, which may produce inefficient code. Afterwards gradually more and more
rules can be added which finally leads to a compiler producing good code.

Beg implements the determination of the minimal cover using a directly coded version of
the dynamic programming algorithm [Emm89a, ESL89].

7

The generation of register allocators is of specific importance, because hand crafting is a
rather difficult and tedious job and because errors in the register allocator are sometimes very
difficult to find. Within rules, the characteristics with respect to register allocation of an instruc-
tion can be specified: the allowed registers for each operand, the registers changed by
side-effects, and whether the instruction is a two address instruction or not. Additionally the
register set of the target machine has to be described. Even the double register problem (e. g.
IBM 370) can be handled.

Two kinds of local register allocators can be requested: the on the fly register allocator han-
dles simple register sets. However, it provides satisfying results for many machines and is very
efficient. In some cases the general register allocator is necessary which performs some kind of
look-ahead. Therefore it requires an extra pass.

5.8. Reuse

Reuse is a library of reusable modules oriented towards compiler construction [Gro87a]. It
contains modules or abstract data types which are needed in almost every compiler:

- a dynamic storage handler

- a module that provides dynamic and flexible arrays

- a facility to store strings of arbitrary length

- a module for string handling

- an identifier table which maps strings to unique integers using hashing

- modules for commonly used data structures such as sets of integers or binary relations
between integers with no limitation of the domain

6. Application Experiences

This section reports the experience of applying the tool box for realistic problems.

6.1. Modula to C Translator

The largest application for the tool box so far was the generation of a Modula-2 to C trans-
lator [Mar90]. The program called Mtc translates Modula-2 programs into readable C code
without any restrictions (even nested procedures and modules). It is largely generated and fol-
lows the compiler model proposed in section 4. Instead of generating an intermediate language,
Mtc produces C code and therefore there is no need for a machine code generator. It incor-
porates as much of a semantic analysis as is needed for this task. The semantic analysis is rather
complete and contains scope handling, name analysis, and type determination. However it does
not check for semantic errors, as we assume that only correct programs will be translated. Table
1 gives the sizes of the specifications and the generated source modules. The design and imple-
mentation of Mtc was completed within a master thesis and took approximately 6 person
months. The program is stable and has already converted more than 100,000 lines from
Modula-2 to C.

The binary program comprises 301,240 bytes. It runs at a speed of 810 tokens per second
or 167 lines per second on a SUN workstation (MC 68020 processor). This figures are computed
by taking only the size of the translated modules into account. If we include the definition
modules which are imported transitively and which are scanned, parsed, and analyzed as well,
we arrive at 1320 tokens per second or 418 lines per second. In comparison, the compilers sup-
plied by the manufacturer run at a speed of 97 lines per second (excluding header files) or 163
lines per second (including header files) in the case of C and 48 lines per second in the case of
Modula-2. The run time of Mtc is distributed as follows:

8

iii
part specification source module tooliii

formal code total def. impl. total name referencesiii
scanner 392 133 525 56 1320 1376 Rex [Gro87b, Gro88]
parser 951 88 1039 81 3007 3088 Ell [Gro88, GrV88]
tree 189 51 240 579 2992 3571 Ast [Gro89c]
symbol table 115 938 1053 413 1475 1888 Ast [Gro89c]
semantics 1886 151 2037 9 3288 3297 Ag [Gro89d]
code generator 2793 969 3762 47 7309 7356 Estra [Vie89]
reusable parts - - - 819 2722 3541 Reuse [Gro87a]
miscellaneous - - - 698 3153 3851iii
total 6326 2330 8656 2702 25266 27968iiic
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1: Sizes of the specifications and source modules of Mtc

scanning + parsing + tree construction 42 %
semantic analysis 33 %
code generation 25 %

The semantic analysis spends 95 % in attribute computations using user supplied code and 5 %
in tree traversal or visit actions respectively. By the way, there are up to five visits to 11 node
types.

Mtc uses approximately 360 K Bytes dynamic memory per 1000 source lines to store the
abstract syntax tree, the attributes, and the symbol table without optimization of attribute
storage. Another 600 K Bytes are used by the transformer generated with Estra. This is bearable
with today’s memory capacities. Contrary to the literature this shows that it is possible to store
all attributes in the tree. We even do this for the environment attribute. This becomes possible by
implementing the symbol table as an abstract data type in the target language. The implementa-
tion is time and space efficient by taking advantage of pointer semantics and structure sharing.

6.2. Code Generator for Modula-2 Compiler

In another application we replaced the hand-written code generator of the GMD Modula-2
compiler Mocka by two versions produced by Beg. Target machine was the MC 68020 proces-
sor. The specification of the code generator comprises 1625 lines. It contains 187 rules and 99
intermediate language operators. To compare the quality of the generated code, we measured the
execution time for a collection of benchmark programs (see Table 2). Mocka denotes the GMD
Modula-2 compiler with the hand-written code generator, Begra and Begfly refer to the code
generators produced by Beg with the general register allocator and the on the fly register alloca-
tor respectively, and Sun is the SUN Modula-2 compiler version 1.0. On the average code gen-
erators produced by Beg generate code that is as fast as the one from the hand-written code gen-
erator.

ii
Perm Towers Queens Intmm Mm Puzzle Quick Tree Bubble FFT Σii

Mocka 40 58 37 53 103 285 32 72 56 152 888
Begra 42 57 35 54 104 297 32 58 56 153 888
Begfly 42 57 34 54 102 299 33 56 56 151 884
Sun 67 90 28 83 101 263 41 81 63 150 967iic
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c
c

Table 2: Comparison of code quality (run times in ticks = 1/60 seconds)

9

iiiiiiiiiiiiiii
Mocka 2.9
Begfly 3.2
Begra 3.9
Sun 25.4iiiiiiiiiiiiiiic
c
c
c
c

c
c
c
c
c

c
c
c
c
c

Table 3: Comparison of compilation times (times in sec.)

Table 3 compares the run times of the compilers for processing a program with 1116 lines.
All measurements were carried out on a diskless SUN 3/60, all measured times are user times.
The size of the code generator increased from 5140 lines (17,117 tokens) for the hand-written
version to 9574 lines (27,044 tokens).

7. Summary and Future Work

We presented a complete tool box of compiler construction tools which supports the con-
struction of all phases of a compiler. The tools are very powerful and flexible and largely
independent of each other. They support a wide range of compiler designs and allow the con-
struction of production quality compilers for many programming languages. First realistic appli-
cations demonstrate the excellent performance of the tools.

The optimization of attribute storage of Ag will be improved allowing attributes to be
treated as global variables and global stacks. The transformation of non-OAG grammars into
OAG ones should be automized.

A redesign is planned for the tool Estra. The specification language will become simpler
and clearer and the tool will be integrated better with Ast. The efficiency of the generated
transformation modules can be improved both in terms of run time and storage consumption.

The optimization phase of a compiler clearly needs to be supported. This could be either
done by a reusable, language independent optimizer, by an optimizer which can be parameter-
ized, or by some means of an optimizer generator.

The tool Beg will be extended in the directions of the generation of a global register alloca-
tor, support for instruction scheduling, and a facility for the direct generation of binary object
code.

Acknowledgement

We thank all that have contributed to the development of this toolbox either by active parti-
cipation or with their ideas: Michael Besser, Carsten Gerlhof, Bob Gray, Rudolf Landwehr,
Matthias Martin, Thomas Müller, F. W. Schröer, Dirk Schwartz-Hertzner, Doris Vielsack, Ber-
tram Vielsack und William M. Waite.

References

[ASU86] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and

Tools, Addison Wesley, Reading, MA, 1986.

[DeP82] F. DeRemer and T. Pennello, Efficient Computation of LALR(1) Look-Ahead Sets,
ACM Trans. Prog. Lang. and Systems 4, 4 (Oct. 1982), 615-649.

[Emm89a] H. Emmelmann, Automatische Erzeugung effizienter Codegeneratoren, GMD-
Studie Nr. 158, GMD Forschungsstelle an der Universit

..
at Karlsruhe, 1989.

[Emm89b] H. Emmelmann, BEG - A Back End Generator - User Manual, Arbeitspapier Nr.
420, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Dec. 1989.

10

[ESL89] H. Emmelmann, F. W. Schr
..
oer and R. Landwehr, BEG - a Generator for Efficient

Back Ends, SIGPLAN Notices 24, 7 (July 1989), 227-237.

[Gro87a] J. Grosch, Reusable Software - A Collection of Modula-Modules, Compiler
Generation Report No. 4, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep.

1987.

[Gro87b] J. Grosch, Rex - A Scanner Generator, Compiler Generation Report No. 5, GMD
Forschungsstelle an der Universit

..
at Karlsruhe, Dec. 1987.

[Gro88] J. Grosch, Generators for High-Speed Front-Ends, LNCS 371, (Oct. 1988), 81-92,
Springer Verlag.

[GrV88] J. Grosch and B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation
Report No. 8, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Apr. 1988.

[Gro89a] J. Grosch, Efficient Generation of Lexical Analysers, Software—Practice &

Experience 19, 11 (Nov. 1989), 1089-1103.

[Gro89b] J. Grosch, Efficient and Comfortable Error Recovery in Recursive Descent Parsers,
Compiler Generation Report No. 19, GMD Forschungsstelle an der Universit

..
at

Karlsruhe, Dec. 1989.

[Gro89c] J. Grosch, Ast - A Generator for Abstract Syntax Trees (Revised Version), Compiler
Generation Report No. 15, GMD Forschungsstelle an der Universit

..
at Karlsruhe,

Aug. 1989.

[Gro89d] J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Aug. 1989.

[Gro90] J. Grosch, Object-Oriented Attribute Grammars, in Proceedings of the Fifth

International Symposium on Computer and Information Sciences (ISCIS V), A. E.
Harmanci and E. Gelenbe (ed.), Cappadocia, Nevsehir, Turkey, Oct. 1990, 807-816.

[Gro91a] J. Grosch, Ast - A Generator for Abstract Syntax Trees, Compiler Generation
Report No. 15, GMD Forschungsstelle an der Universit

..
at Karlsruhe, Sep. 1991.

[Gro91b] J. Grosch, Tool Support for Data Structures, Structured Programming 12, (1991),
31-38.

[Joh75] S. C. Johnson, Yacc — Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

[Kas80] U. Kastens, Ordered Attribute Grammars, Acta Inf. 13, 3 (1980), 229-256.

[Les75] M. E. Lesk, LEX — A Lexical Analyzer Generator, Computing Science Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

[Mar90] M. Martin, Entwurf und Implementierung eines
..
Ubersetzers von Modula-2 nach C,

Diplomarbeit, GMD Forschungsstelle an der Universit
..
at Karlsruhe, Feb. 1990.

[Vie89] B. Vielsack, Spezifikation und Implementierung der Transformation attributierter
B

..
aume, Diplomarbeit, GMD Forschungsstelle an der Universit

..
at Karlsruhe, June

1989.

[VSK89] H. H. Vogt, S. D. Swierstra and M. F. Kuiper, Higher Order Attribute Grammars,
SIGPLAN Notices 24, 7 (July 1989), 131-145.

1

Contents

Abstract .. 1

1. Introduction .. 1

2. Design Goals .. 2

3. Common Implementation Decisions ... 2

4. Compiler Model ... 2

5. The Tools ... 4

5.1. Rex ... 4

5.2. Lalr ... 4

5.3. Ell ... 5

5.4. Ast .. 5

5.5. Ag ... 5

5.6. Estra ... 6

5.7. Beg ... 6

5.8. Reuse .. 7

6. Application Experiences .. 7

6.1. Modula to C Translator .. 7

6.2. Code Generator for Modula-2 Compiler ... 8

7. Summary and Future Work .. 9

Acknowledgement ... 9

References .. 9

